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ABSTRACT 

This report describes a numerical model of the world oceans based on the primitive 
equations. The model ocean extends from 60” south to 60” north and is global in longi- 
tude. Continental boundaries areapproximated by connecting mesh points with straight 
lines. For horizontat motions, the resolution ahowed by the mesh is 5 deg. The vertical 
structure consists of six unevenly spaced layers which vary in size from 0.05 km at the 
surface to 0.8 km at the bottom. Bottom topography is ignored, but a free upper surface 
permits the existence of external gravity waves. 

There are five prognostic variables (temperature, salinity, surface height anomaly, and 
two horizontal velocity components) which are functions of the four independent 
variables (latitude, longitude, depth, and time). Diagnostic variables are density anomaly, 
pressure, and vertical velocity. These are determined from the prognostic variables 
through an equation of state and the assumptions of hydrostatic equilibrium and 
incompressibility. 

I. INTRODUCTION 

In 1922, Richardson [l], [2] published a detailed description of his attempt to 
model large-scale atmospheric phenomena numerically. His was the first serious 
attempt to approach this problem from the numerical point of view, and he was 
unsuccessful primarily due to lack of computing power. 

The development of electronics during World War II resulted in the birth of the 
high-speed electronic digital computer, which enabled Phillips [3] in 1956 to develop 
the first successful general circulation model. The rapid advance of computers and 
computer technology has led in the past five years to several “second generation” 
atmospheric models [4]-[9] some of which produce tine film records which reveal 
remarkably realistic weather-like motions over periods of days. Present day 
routine 24- and 48-hour predictions by the U.S. Weather Bureau are based on 
results from a simultation model aided at times by human interpretation. 

All atmospheric models simplify the surface boundary condition to some extent. 
This simplification results in part from inadequate knowledge of the workings of 
the ocean-atmosphere boundary layer. To understand the energy transfer between 
the ocean and the atmosphere and thereby to develop more realistic atmospheric 
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models, it is necessary to model the ocean and eventually to couple the two models 
together. It is anticipated that by so doing, we will gain additional knowledge of 
the dynamics of the ocean itself. 

Analytic theories of the wind-driven ocean circulation [lo] have identified the 
causes of most of the apparent, large-scale oceanic phenomena such as the westward 
intensification of currents and the equatorial counter currents. Separate studies 
have also been made of thermohaline effects [I l]-[13]. However, the real ocean 
is a time-dependent, three-dimensional nonlinear collage of these and other 
effects and in order to account for all the interactions one must eventually resort 
to numerical modeling. Pioneering work in this direction has been done by Bryan, 
[ 141, Sarkisyan [15], and others [ 16]-[ 191, who modeled the wind-driven circulation 
in different regions of the oceans. More recently Bryan and Cox [20] extended 
Bryan’s model by including thermal effects. 

This report (Part I) describes a global numerical ocean model presently under 
development. A later report (Part II) will contain results of calculations with the 
model. 

The model is based on the primitive equations. At any time, each mesh-point in 
the ocean is characterized by a temperature, a salinity, and two horizontal velocity 
components. The surface height anomaly is also computed as a function of time 
and space. From these five prognostic variables, an equation of state, and the 
assumptions of incompressibility and hydrostatic equilibrium are derived the 
vertical velocity field and the internal pressure distribution. 

The model ocean extends from 60” south to 60” north in latitude and is global in 
longitude. Continents are crudely approximated, but bottom topography is ignored, 
the ocean having a constant depth of 2 km which is divided into six unevenly 
spaced zones. The horizontal resolution is 5 degrees in latitude and in longitude. 

Details of the model are presented in the following order. The mesh, coordinate 
system, and dependent variables are introduced in Section II. Sections III and IV 
give the basic equations and boundary conditions for the model. Since all external 
energy sources occur at the surface, the energy must be redistributed internally by 
physical processes. Two of these are dealt with in detail in Sections V (Vertical 
Convection) and VI (Eddy Diffusion). The finite difference approximations used 
are described in Section VII and a description of a calculation cycle is given in 
Section VIII. A list of symbols is given in Appendix A. The numerical technique 
used along lateral boundaries is discussed in Appendix B. 

II. COORDINATE SYSTEM, MESH, AND DEPENDENT VARIABLES 

The equations (see Section III) of the model are written relative to a spherical 
coordinate system rotating with angular velocity Sz. The longitudinal angle h and 
its associated index k increase to the east from zero at Greenwich. The latitudinal 
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angle 0 and its index 1 increase poleward from zero at the equator in each hemi- 
sphere. Meridians and parallels are thus k and I lines, respectively. The radial 
dimension z and its index m increase from a mean surface toward the center of the 
sphere. Thus the northern hemisphere forms a left-handed coordinate system, and 
the southern hemisphere forms a right-handed coordinate system. 

Since this is a numerical model, the solutions of the equations of the model can 
be found in practice only at a finite number of points in the coordinate system. 
These points constitute the finite-difference mesh (or grid), and the physical 
separation of the points gives a lower bound to the scales of motion that can be 
explicitly computed with the model. On a surface z = constant (which will be 
loosely referred to as a horizontal surface) the mesh points are intersections of 
parallels with meridians and are separated by 5 deg in each direction. Due to the 
convergence of meridians in the poleward direction, the physical separation of 
k lines decreases from approximately 555 km at the equator to 278 km at 60 deg, 
where the mesh is terminated. The vertical structure consists of six layers with mesh 
points at z = 0.0, 0.05,0.10,0.20, 0.60, 1.20, and 2.0 km. 

There are eight dependent and four independent variables in the model. Three of 
the dependent variables are derivable from the other five, and these three are known 
as the diagnostic variables. The remaining five variables are all time-dependent- 
their behavior is governed by partial differential equations. Since they are sufficient 
to determine the evolution of the model, they are known as the prognostic variables. 
The five prognostic variables are then temperature (T), salinity (S), east-west 
velocity (U = a cos 0 C&/C&), north-south velocity (v = a &~/CA), and surface height 
anomaly (z,). Each of the first four is a function of the four independent variables; 
latitude, longitude, depth, and time. The surface height anomaly is a function 
only of latitude, longitude, and time, being defined only at the surface. 

The diagnostic variables w (vertical velocity) and p (pressure) are evaluated from 
the prognostic variablesatany particular time through equations arising from the as- 
sumptions of incompressibility and hydrostaticequilibrium. The thirddiagnostic var- 
iable u (density anomaly)is an algebraic function of temperature, salinity, and depth. 

For numerical purposes, the dependent variables are classified as being even, odd, 
or mixed. The odd prognostic variables, u and U, are centered between mesh points 
at (k - f, 1 - Q, m - 4, n - $) where n is the time index. Temperature and 
salinity are the even prognostic variables, and they as well as the diagnostic quantity 
CJ are located at mesh points (k, I, m, n). The fifth prognostic variable, z, , is even 
also, but is independent of depth and is thus located at the mesh points (k, 1, n). 
The vertical velocity, being a vertical integral of a horizontal divergence of odd 
quantities occurs quite naturally at (k, 1, m, n - =&), while the pressure gradient is 
the horizontal derivative of a vertical integral of even quantities and is centered at 
(k - 8, I - 4, m - +, n). These last two quantities are examples of mixed 
dependent variables. 
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III. EQUATIONS 

At any time the state of the model is given by the eight variables U, v, T, S, z, , w, p, 
and u. 

The temporal dependence of the model is governed by five partial differential 
equations for the tendencies of the prognostic variables U, u, T, S, and z, . At any 
particular time, the other three variables are obtained from the prognostic variables 
through an equation of state and equations arising from the assumptions of 
incompressibility and hydrostatic equilibrium. Thus the model involves eight 
equations in eight unknowns. 

The acceleration equations for a fluid particle in an inertial frame are, according 
to Newton’s second law, obtained by equating the acceleration of the fluid particle 
to the net force per unit mass acting on the particle. Relative to a fixed spherical 
coordinate system, the equations are [24], 

du 
z+ 

lini, - liv tan 0 
I = F, , 

$3 
&+iPtanO 

r =Fo’e, 

dei; ti2+z12 F 
-zi----= ?’ I 

Here 6 is the latitudinal angle, y is the longitudinal angle, li = r cos 8 dy/dt, 
v = r dfl/dt, and ei = drjdt. The F’s contain all the forces acting on the fluid 
particle and the substantial derivative is 

We transform to a coordinate system rotating with constant angular velocity L? 
by defining a new longitudinal variable A, 

I 
x = y - Qt. 

With u = r cos 8 dA/dt = zi - Qr cos 8, the equations become 

uti - uu tan 8 
r 

- 252~ sin 8 + 252& cos 8 = FA , 

74+u2tan8 

f+ r 
+ (224 + rf2 cos 0) 52 sin 6 = FO , 

dti 242 + v2 _-~- 
dt r 

(2u+rQcos8)sZcos8 = F,, 



A GLOBAL NUMERICAL OCEAN MODEL: PART I 115 

where now the substantial derivative is 

dv au+ u 
-;Z;;- ,, 

av , 2, av , A av 

dt ilt acosuzfTfaTTW* 

Expanding the forcing functions so as to expose the pressure terms and body 
forces, 

n 
F,. = -$-g+F,, 

1 

FT+rA-i’2cos2~= -;~+;;(r2&2cos28)-g+FT, 

F =-l&F 0 prae 0’ 

. 

F,--rP2cos6sin8=-lap+f~~(reS2ecos28)+F,, 
pr a8 

n 
F,= -‘!t+ 

prawn 9 aA 
~&22cos”B)+F,, 

where the F’s contain what remains of the forcing functions, namely the viscous 
terms. We now let p = ji - hpr2Q2 cos2 0 where the density variation is ignored 
and the equations become, 

du z+ uzZ--uvtand 1 
r 

-2Qusin8+2Qei,cose=--- ap + F, , pr cos 0 ah 

g+ 
veir + u2 tan 8 

r 
+ 252usine = -Lap+F 

pr ae @’ 

dw u2 + v2 --~ 
dt r 

-2Qucos8= -+g+F,. 

By including the centrifugal term due to the absolute rotation of the coordinate 
system in with the pressure term, we have essentially removed the constraint that 
the surface of the earth be a sphere. The cos2 6 dependence indicates that the 
surface bulges at the equator relative to the poles. 

Order of magnitude arguments reduce the third equation to the hydrostatic 
balance equation and allow the terms v&j/r and z&/r to be dropped from the first 
two equations. In addition, we make the transformation to a vertical coordinate 
measured downward from the surface r = u, 

z=a-r, 
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where a is the (assumed constant) radius of the earth’s surface. Thus 

w = dz/dt = -7.i 

and 
ajaz = -aajar 

and the equations are 

a”= --v~vu+fu+2~wcose- ’ 
at 

--p+ Du, 
pr cos e ax 

au 
at= 

-v.vv-fu--2+DDv, 
pi ae 

apla2 = gp, 

(III-l) 

(111-2) 

(111-2.1) 

where V has components (u, U, w),f = 29 sin 0 + (u/a) tan e and Q is the angular 
velocity of the “sphere” of radius a. The advective term for a vector component or 
a scalar, say 4, is given by 

The term Du represents an eddy diffusion of east-west momentum and is taken 
to be of the form 

a au 
Du = KV,~U+ z~Naz. 

It is recognized that this form for an eddy viscosity is inappropriate for flow on a 
sphere. For example, solid body rotation (v = 0, u CC cos t9) results in a physically 
unacceptable diffusion of momentum. A more reasonable diffusion term would 
perhaps be based on the diffusion of angular momentum rather than linear momen- 
tum. The above eddy viscosity does however remove energy from scales com- 
parable to the grid size, and thus it prevents the occurrence of nonlinear com- 
putational instabilities. 

The vertical velocity field is obtained from an integral form of the incom- 
pressibility assumption 

(111-3) 

where 9 is the local horizontal divergence of the (u, U) field, here 
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and H is the depth of the ocean (H = 2 km). The upper limit of the integral is 
bounded by the inequality z, < 6 < H. 

If equation (111-3) is integrated over the surface of all oceans 

s w(X, 8, z,) da = 
s 

I 
s 

w(h, 0, H) da + /: j- B(h, 0, z’) da dz’, 
s 

where da = a2dAd sin 8, we find that there is no net change in the surface height. 
That is, ignoring evaporation and precipitation, volume is conserved. 

The first integral on the right is zero since the integrand is taken to be identically 
zero as a boundary condition. The second integral is transformed by Green’s 
theorem to, 

/,9(X, 0, z’) da = s uade + / va cos 9 dh, 
Pl p2 

where P1 consists of all boundary lines A = constant and P, consists of all boundary 
lines 0 = constant. The boundary condition of zero normal velocity makes these 
last two integrals zero. Thus 

j 
w(X, 8, z,) du = 0 

s 

and volume is conserved. 
Since w(X, 8, z,) is not necessarily zero, an equation is needed to determine the 

evolution of the surface height as a function of latitude and longitude. The 
kinematic boundary condition w(z,) = dz,/dt provides the necessary equation. 
Thus, the tendency of the surface height anomaly,l z, , is 

az$at = -v . VZ, + w(z,). (1114) 

A tendency equation for temperature is obtained by starting with the first law of 
thermodynamics in terms of specific enthalpy h. For a fluid particle, then, 

dq = dh - oldp, 

where 01 is the specific volume. (Note that for adiabatic motions, the hydrostatic 

‘As indicated earlier, the earth is a rotating approximately oblate spheroid with the polar 
radius corresponding to the minor axis. The gravitational acceleration due to the earth’s mass 
and the centrifugal acceleration due to the earth’s rotation form a vector that is normal to the 
mean surface of this spheroid. This surface is given by z = 0; any differences between this system 
and a spherical coordinate system are ignored. The surface height anomaly zs is then the local 
variation of the ocean’s surface about z = 0 due to currents in the ocean. 
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assumption leads to conservation of the sum of enthalpy and potential energy in 
any coiumn.) Assuming that h = h(p, T), 

dq = c, dT + ($ - CX) dp 

and using the reciprocity relation ah/+)* = cy - T &xjaT), , 

dq = c,dT- T$dp = c,dT- Tc&dp (111-4.1) 

where 

p=;g. 
9 

Using the hydrostatic equilibrium relation, dp = pg dz, replacing differentials with 
total time derivatives, noting that the vertical velocity is w = dz/dt, and introducing 
the mechanical equivalent of heat (J), we see that Eq. (M-4.1) becomes 

dT 1 4 + Piw T -=-- 
dt c, dt Je, ’ 

where j? = p(T) as given in Fig. 1.. Thus the tendency equation for temperature is, 
with g/Jc= = 2.35 degjkm, 

aT 
af= -V l VT f uJh2T + $ K*,, g + 2.35/3wT (III-S) 

and diabatic effects arise through horizontal and vertical eddy diffusion processes. 
That is, 

1 4 a aT --= 
c, dt Q-V,%+ ~"Tv~' 

The tendency equation for salinity comes from mass conservation considerations. 
Considering only surface effects for the moment, we can write mass conservation as 
dp/dt = -aG/az where G[gm/cm%ec] is a mass flux across the surface of the ocean, 
due to evaporation and precipitation. There is assumed to be no exchange of salt 
through the boundary layer connecting the atmosphere to the ocean, but the flux of 
water results in a salinity change. The salinity (gm/kg) is defined by S = 10009 
where 9 = m&n, f m,& and the average density in a zone of volume Y is i hus 
p = m,/YV. Since M, is a constant, under the processes considered, 

d(pYV) dm, o 
---=-=. 

dt dt 
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Thus 
d9 YdP 9 aG -z-----z-- 
dt P d P 62 

for V = constant, 

dS SaG 
-=-- . 
dt p az 

Upon introduction of advection and eddy diffusion, the salinity equation becomes 

as a 8S 
--= -V*WS-/-K~V~~S+~~K~,,~ at 

300 

260 
I 

300 - 

260 - 

260 260 - 

240 240 - 

220 220 - 

200 200 - 

- 40 

- 30 

- 20 

- ,,i-‘--Ti 

275 265 295 305 

T 

FIG. 1. The left curve is 

275 285 295 305 

T 

(111-6) 

as a function of temperature at atmospheric pressure [ZZ]. The right curve is a correction for 
depth, A) having units DC--J km-l. The coefficient of thermal expansion at depth z is then )? + z.4~. 
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where 

The density anomaly at atmospheric pressure or is an analytic function of 
temperature and salinity [21] given by 

uT = 28.14 - 0.0735 T - 0.00469 T2 + (0.802 - 0.002 T)(S - 35), 

where Tis temperature in degrees Celsius, Sis salinity in gm/kg and 0 = 103(p - 1). 
The density anomaly in situ is approximated by including a term which accounts 
for the slight compressibility of water, 

(T = (ST + 4.9107(2 - z,), (111-7) 

where z is the depth in km. 
Hydrostatic equilibrium [Eq. (III-2.1)] allows the pressure gradient to be 

computed from 

~(5) = ps + g j;, p(f) dz’, (III-8) 

where z, < .$ < H, and ps is the surface pressure due to the weight of the atmos- 
phere over the point in question. Thus, the east-west component of the pressure 
gradient at depth 5 is 

34s) - = g + g ,:, $ p(k 0, z') dz' - gps $44 0) a A (111-9) 

and a similar equation holds for the north-south component. It is seen then that 
the pressure term provides accelerations due to horizontal variations in surface 
pressure, in mass distribution, and in surface height. The contribution to the 
pressure gradient from variations in surface pressure and in surface height anomaly 
is independent of depth while the total gradient is a function of depth due to the 
internal variations in mass distribution. 

The model is thus based on eight equations [Eqs. (III-l)-(111-8) excluding 
(III-4.1)] in eight unknowns. The equations are presented in the order in which 
they are solved. The methods of solution are dealt with in subsequent sections. 

IV. BOUNDARY CONDITIONS 

The boundary conditions fall naturally into two groups: (1) active or interactive 
boundary conditions at the surface, which include the driving mechanisms for the 
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ocean, and (2) passive lateral boundary conditions, which determine the physical 
boundaries of the flows generated. 

The sea surface is a free boundary, subject to the kinematic boundary condition 
wS = dzS/dt, hence external gravity waves are not excluded from the model (they 
arise through the pressure gradient term gVz, in the momentum equations). Since 
the minimal horizontal resolution is more than two orders of magnitude greater 
than the depth of the ocean, these gravity waves if they appear are shallow water 
waves and move with speed (gH) lj2 or approximately 500 km/hr. There are also 
internal gravity waves present, but the speed of these waves is much less than that 
of the external gravity waves. 

At the surface, the various mechanisms driving the ocean are introduced in terms 
of fluxes of momentum, water, and heat. Each of these quantities is determined at 
every surface mesh point as a function of local conditions. 

The acceleration equations are affected by the gradient of atmospheric surface 
pressure [Eq. (III-9)] and surface stresses (which come from the empirical “square 
law” F = -pCD I V 1 u, (see Ref. [22]). 

(IV-2) 

where CD is the drag coefficient, I V I2 = ua2 + va2, and u, and v, are the lOOO- 
millibar winds. Balancing the surface stress against the momentum flux into the 
uppermost of the six vertical zones allows a surface current (u, , v,) to be estimated: 

7-‘%&1~ - us) 
z2 - Zl 

= -CD1 I// 2.4,. 

Here u~.-~/~ is the east-west velocity component at a depth of 12.5 meters, i.e., 
between the surface (m = 1) and the first interior mesh point (m = 2). A similar 
equation holds for v, , which results in 

U, = Ult + (Z2 - ZI) cd v / K&k2 3 
V, = V,) + (22 - Zd c~i v 1 Q&u . 

(IV-4) 

Values of the drag coefficient and vertical eddy viscosity coefficient currently being 
used in the model are CD = 6 x lO-s and K, = 3.6 x 10e5 km2/hr (100 cm2/sec). 

The surface source term in the salinity equation is the difference between the 
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precipitation (P > 0) and evaporation rates, the precipitation is a given rate, and 
the evaporation rate is determined from 

fw = --c, I v I (py - pa>, (N-5) 

where pa is the water-vapor mixing ratio at 1000 millibars and pLs is the saturation 
value of the water-vapor mixing ratio at the local surface temperature (pLs is a 
tabulated function of temperature). 

as, 
KTv az -1 = S(P +tw> (IV-6) z=z, 

The heat source at the surface includes net radiation (I- A = insolation - net 
outward terrestrial radiation), heat lost through evaporation, and sensible heat 
transfer, which is 

fh = -G I VI v- T& (IV-7) 

where T, is the lOOO-millibar air temperature. Thus the (negative) heat flux into 
the surface is 

t?T 
KTu az -1 z=zg 

= A - i(1 - A) + $/; + fh . (IV-8) 

The albedo A of the surface is taken to be zero (it is on the average approximately 
7 % for Fresnel reflection from a smooth surface, but this is complicated by waves). 
All insolation reaching the ocean surface is assumed to be absorbed in the top 
12.5 meters of the sea; this is in reasonable agreement with Pivovarov [23] who 
states that basically only the visible part of the spectrum penetrates beyond the 
top 50 cm and that even this is rapidly attenuated. 

Lateral boundaries occur at 60 deg north and 60 deg south as well as along 
continental outlines. These boundaries are formed by connecting mesh points with 
straight lines so that the continents are at best crudely represented. The horizontal 
mesh and the lateral boundaries are shown in a world diagram (Fig. 2). Land 
(i.e., nonocean) regions appear stippled, and these regions are ignored in the 
calculation. 

The lateral boundary conditions on temperature and salinity are of the insulating 
type. For momentum they are of the inviscid, slip type, so that the normal com- 
ponent of velocity is zero as is the shear. These boundary conditions are also 
imposed at noncontinental boundaries at 60 deg north and 60 deg south. Numerical 
techniques employed along lateral boundaries are discussed in Appendix B. 

On the floor of the ocean, the normal temperature and salt fluxes are set zero 
(insulating boundary condition) as are the momentum flux and the vertical velocity 
[w(H) = 01. 
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According to these boundary conditions, the model ocean is a fluid constrained 
to lie on a sphere between two parallels. It is subdivided into a number of connected 
basins by continents and is being driven by fluxes of heat, water, and momentum, 
all of which are introduced in the surface layer. 

Energy deposited in surface layers is redistributed throughout the ocean by 
advective currents and by eddy diffusion processes. The horizontal eddy diffusion 
is usually proportional to the negative gradient of the quantity being diffused, the 
coefficient of proportionality being a constant. For momentum, a more complex 
prescription is used; this is discussed below in the section on eddy diffusion. 
Vertical diffusion is complicated somewhat by the presence of a gravitational field; 
this is discussed further in the next section. 

V. VERTICAL CONVECTION 

For the most part, the vertical structure of the real ocean is stable. It does, 
however, attain an unstable configuration when the vertical density gradient 
becomes less than some (positive) critical gradient. This situation can occur at any 
level, but it is more likely to happen in the surface layers where it is instigated by 
the relative balance of heat fluxes with evaporation and precipitation. For example, 
in regions where there is an excess of evaporation over precipitation, the accom- 
panying increase in surface water salinity causes a corresponding density increase. 
The unstable situation can also occur in regions where there is a net loss of heat 
from the surface water to the atmosphere. The cooling surface water will then tend 
to become heavier than the underlying, warmer water. This is a very noticeable 
effect in high-latitude waters during the winter months. Due to the extreme net 
heat loss (even during daylight hours) these winter waters are very unstable and 
lack both a thermocline and a halocline. In tropical waters, the cooling of surface 
water at night may lead to instabilities in this region also, but this is a diurnal effect. 

In nature, these unstable situations are held in check by small-scale convection 
currents [24]. In this model, the unstable situations are rectified by the inclusion 
of a nonlinear vertical diffusion coefficient, which is assumed to be a function of 
(l/p)(%/&) dz, a measure of the static stability. (We will use d to denote an in situ 
difference and 6 to denote a change following a parcel of water.) 

The density of sea water is a function of temperature, salinity, and pressure. 
Due to the slight compressibility of water, there is an adiabatic temperature increase 
with depth, 

AT 13gT _=- 
AZ JCD 

(V-1) 
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so that a parcel of water moved adiabatically from z1 to z2 will realize a temperature 
change of 

6T=dT=~(z,-zl). 
9 

Thus a parcel at depth z when raised adiabatically to the surface will have a 
temperature 

0= T--&T (V-2) 

where 6T is roughly /3gTz/Jc, . This then defines the potential temperature. 
Consider a water column of constant salinity and potential temperature. The 

in situ temperature gradient is given by LIT/AZ = jlgT/Jc, , and the column is 
said to be stable or in convective equilibrium. That is, a water parcel displaced in 
the vertical will find itself surrounded by water of the same temperature. Its motion 
will be neither amplified nor retarded since its density is that of the water it dis- 
places. 

Indifferent equilibrium is a special case, rarely if ever encountered. More 
generally, the salinity and potential temperature are functions of depth. If in the 
general case a displaced parcel is subjected to a restoring force by buoyant effects, 
the situation is said to be stable. Otherwise it is unstable. 

Consider a parcel of density p( Tl , A’, , pJ originally at depth z1 which is displaced 
adiabatically downwards to depth z2. It finds itself surrounded by and displacing 
water of density p(T, , S, , pZ). The condition for stability is then 

(V-3) 

Expanding the left side of Eq. (V-3) in a Taylor series, 

P(T, + R s, > A> = AT, , & , ~1) + $- 6T + $ (pz - pl), (V-4) 

and substituting Eq. (V-4) into Eq. (V-3), we obtain 

P(T,,S,,PZ>--P(T,,~,,P,) >l”paT I laqp -p) 

P P aT pap 2 1' 

Replacing -(l/p)(ap/aT) with the coefficient of thermal expansion and (l/p)(ap/ap) 
with the coefficient of compressibility, the condition for stability becomes 

Aplp > -@T + KAP 
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Substituting for 6T from Eq. (V-l), and using the hydrostatic relation, the 
condition for stability in terms of the density anomaly is 

A0 
-> BW 

P i - Jc + Kpg) 103Az (V-5) r, 

Parameters characteristic of the upper tropical layers are 

T = 300 deg, 
j3 = 310 x 10-6/deg, 
K = 4500 x lo-+/bar. 

For these values, the stability condition becomes 

AU/~ > (-6.7 + 440) 10-2Az 

110 I I I I I I I 

0 .l .2 .3 .4 .5 

$du 

FIG. 3. The vertical diffusion coefficient K rw = K,J as a function of the vertical gradient 
of the density anomaly (Q is a constant). 



A GLOBAL NUMERICAL OCEAN MODEL: PART I 127 

or 
AU/~ > 4.342 W-6) 

where dz is in km. 
Thus unstable situations may occur even if lighter water lies above heavier 

water. In any case, if the in situ gradient of u is less than some critical gradient, 
the stratification is unstable; in nature this gives rise to convection currents. 

In the model, convection currents are statistically treated by specifying the 
vertical diffusion coefficient as a function of the vertical density gradient, KTv = K& 

where K,, is a constant and 5, as a function of Au/p, is as given in Fig. 3. The 
functional dependence was established through numerical experiments with a 
one-dimensional (vertical) version of this model. 

The arguments given here are based on the static stability of a column of water, 
and no allowance is made for the influence of current shear on stability [25], [26]. 

VI. HORIZONTAL EDDY DIFFUSION 

In this section both linear and nonlinear horizontal eddy viscosity coefficients are 
derived from notions about two-dimensional turbulence. (The ocean has a Reynolds 
number of 10Q, based on U = 1 km/hr, H = 5 km, and v = 0.01 cm2/sec, and so 
is clearly in the turbulent domain of hydrodynamics.) 

It has been known for some time that two-dimensional turbulent motions 
produce different spectra than three-dimensional turbulent motions [27]; the scale 
length separating these regimes is of the order of 10 km for the atmosphere and 
5 km for the oceans. For small scale (i.e., three-dimensional) motions, the 
experimentally determined energy-density spectrum is proportional to k-5/3 [28], 
[29]. This evidence is reinforced theoretically by the Kolmogorov hypotheses in 
which a constant energy-cascading rate E[L~T-~] is assumed to exist in an inertial 
range (which separates the energy-containing range from the dissipation range) 
in wavenumber space. Dimensional arguments then give, for the energy density, 
E[L%-1, 

E z &Wk--6/3. (VI-I) 

An eddy viscosity K[L~F] which is a function of only E and k is, dimensionally 

(VI-2) 

so that, for k-l = 5 km, and E in the range 0.01 to 1.0 cm2/sec (see Ref. [5]), 

0.87 x 10’ < K < 2 x IO7 cma/sec. 
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With the horizontal mesh used in this model, the length-scale of explicitly com- 
puted horizontal motions has a lower bound of approximately 1000 km. Since the 
vertical length-scale is 5 km, the horizontal motions are clearly two-dimensional 
in nature; consequently one cannot resort to three-dimensional turbulence ar- 
guments for eddy viscosities. Fortunately, progress is now being made in the theory 
of two-dimensional turbulence, and eddy viscosities can be estimated on the basis 
of these theories. 

In two-dimensional turbulence, there is, in addition to a constraint on energy, 
a constraint on vorticity [30]. By considering the conservation of mean squared 
vorticity as well as kinetic energy, Kraichnan [31] and Leith [32] arrived at the 
relation 

E cc T2’sk-3, (VI-3) 

where 7[P3] is the (assumed constant) cascading rate of mean squared vorticity. 
Using the three-dimensional case as a guide, we assume that the eddy viscosity is 
only a function of 7 and k, and deduce, dimensionally, 

K = cy$/3k-2, (VI-4) 

where a: is a constant. Unfortunately, 7 has not yet been determined experimentally, 
but it can be estimated from planetary vorticity considerations: 

ad v ad 
71=,,r-- a a0 

= (8Q2v/a) sin 0 cos 0. 
(VI-5) 

The choice of v = 1 km/hr and 0 = 7714 gives v s 4.3 x 10-5hr-3. Then for 
k-l = 550/r = 175 km, the eddy viscosity coefficient becomes 

K = 107001 km2/hr. 

An alternate approach is to estimate rl locally (i.e., at each mesh point) as a 
function of the surrounding data, and to obtain in this manner a nonlinear vis- 
cosity. According to Leith [33], an estimate of 7 might be 

7 = K(VW) * (VW) (VI-6) 

where o is the local vertical component of vorticity. Substituting Eq. (VI-6) into 
Eq. (VI-4), 

K = (&2L)3 1 VW 1) (VI-7) 

where L is a measure of the horizontal mesh size. Since we want no diffusion in the 
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limit of solid body rotation, w should be the relative rather than the absolute 
vorticity. 

In experiments with the model, both linear and nonlinear viscosities are being 
tested. For the linear case, the model will run without nonlinear computational 
instabilities developing if a viscosity coefficient of not less than 3600 km2/hr 
(lOlo cm2/sec) is used. It is possible, however, to run with much smaller eddy 
diffusivities and values of K~ < 360 km2/hr are being tested. Thus eddy Prandtl 
numbers in excess of 10 are being used. Preliminary results from experiments with 
the nonlinear viscosity coefficient indicate that LY = 2.4 prevents the computational 
mode from developing. 

VII. FINITE DIFFERENCE EQUATIONS 

In this section, the numerical methods employed by the model are discussed. 
First, some general comments are made on the conversion of differential equations 
into finite difference equations. Then the numerical approximations to advection, 
diffusion, volume conservation, and the Coriolis acceleration are discussed and 
examined in the light of numerical stability considerations. Finally, the approxi- 
mations to integrals for surface height anomaly and pressure are presented. 

Ignoring for the moment the Coriolis term, the prognostic equations (Section III) 
are all of the form 

&,b/lat = -(A + B + . ..) t,b, (VII-I) 

where $ = $(A, 8, z, t) is a scalar or a vector component and A, B,... are differential 
operators representing advection and diffusion. For example, if A represents 
east-west advection, A# = (u/a cos @(a#A). The transformation of Eq. (VII-l) 
into a difference equation is accomplished by first approximating the time derivative 
with a forward time differencel, 

p+l = p - &(A + B + . ..) p. (VII-l. 1) 

It would then seem to be a straightforward matter to replace the differential 
operators with stable difference approximations and to proceed to solve the 
resulting set of algebraic equations. It turns out, however, that even though the 
separate operator approximations may be stable, adding them together as in 
Eq. (VII-1.1) can cause computational instabilities to occur [6]. This difficulty is 
avoided by using an explicit version of Marchuk’s method of time-splitting [34], 
so that Eq. (VII-1.1) is approximated by 

p+“=(z-AA,)***(z-A2)(z-Al)p, (VII-1.2) 

1 For A, B,... independent of time, Eq. (VII-l) integrates to 9(t) = E~(~+~+...)#(O); Eq. (VII-1.1) 
thus has errors O(dt2). 

581/3/I-9 
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where now the A’s are matrix representations of finite difference operators, and the 
factor of At has been absorbed. 

Each of the separate operators in Eq. (VII-1.2) represents a different physical 
process (a different term in the differential equation) and the equation is solved in 
practice in a series of steps. For example, first ++llr is formed from 

I)‘-/~ = (Z - A,) I,@, 

where (Z - A,) may represent north-south advection. Then @‘+2/T is formed, 

@+2/r = (1 - A,) @+1/r, 

where (Z - A,) may represent east-west advection. Finally, 

(The fractional times between n and n + 1 have no physical interpretation.) Thus a 
sequence of one-dimensional operators has advanced I,@ to @+l, and the numerical 
stability of Eq. (VII-1.2) is clearly assured if each operation is separately stable. 

The model is however composed of a system of five differential equations, and 
the determination of a stability criterion for the system is more complicated than 
that stated above. In fact, the complete stability analysis would involve determining 
the eigenvalues of the hfth-order amplification matrix associated with the system of 
difference equations. Rather than proceed in that manner, we consider each 
physical process separately and arrive at a stability criterion for each separate case. 
From the separate criteria, a criterion for the system is estimated and this then 
permits a time step to be recommended. The procedure is justified a posteriori in 
that the model is numerically stable only when the recommended time step is not 
exceeded. 

Consider advection on a mesh where the space increment (AZ) is not a constant. 
In Eq. (VII-1.2) this might be the result of the qth operator, giving the partially 
advanced function 

#n+q/C = (1 - A,) p+(a-1)/T. (VII-2) 

Physically, this step is modeled on the advection equation 

a* a* ~+wY&=o, 
which expresses the idea that # is constant along characteristics of slope I/w in the 
(2, t) plane. 

If the wn+1/2 field is known, a characteristic line (Fig. 4) may be passed through 
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the point (m, n + 1) intersecting the line t = ndt a distance -wdt from the 
point (m, n). Since # is assumed to be known at all m points at time t = ndt, it can 
be approximated at any point between the mesh points (at time t) to a degree of 
accuracy dependent on the number of points used in the interpolation process. 
In particular, #*($J evaluated at z* = z, - wAt> can be estimated by passing the 
quadratic form # = a + b(z - z,,,) + c(z - z~)~ through the three points z,l~+~, 
*m 3 *?n+1 and evaluating the resulting expression at z*. If P = z,+~ - z, and 
Q = zm - ~-1 3 the coefficients turn out to be 

b = Q"hn+l - P2h-1 - $m(Q2 - P”) 
f’Q(P + Q> , 

c = Q&n+, + Wn-I- bn(P + Q> 
PQ(P + Q> ’ 

and the advection process based on a quadratic fit is then given by 

G+l = +* = K + p(p + Q) x(x + Q, (An+1 - An> - ;;l”p + ;; (+m - $LJ 

where x = - wn+WAt. The operator for vertical advection is thus 

(VII-3) 

n+l 

n 

FIG. 4. Advection diagram. 
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Horizontal advection is carried out on a uniform mesh (P = Q), the operator 
becoming, in this case, 

where 01 = ud t/a cos Bdh for east-west advection or uAt/aAO for north-south 
advection. 

The horizontal diffusion process may be approximated by 

w4~ = -P($?+l - 294 + $d, (VII-5) 

where /3 = KAt/Ax2. Since Eq. (VII-5) is similar in form to a part of Eq. (VII-4), 
for expediency horizontal advection and diffusion are combined under one 
operator, 

The stability analysis proceeds in a straightforward manner. An eigenvector 
l ikiAx is substituted for #j in Eq. (VII-6). This allows evaluation of the eigenvalues 
[(k) of (I - A). If (I - A) is normal (i.e., it commutes with its Hermitian adjoint), 
a necessary and sufficient condition for stability is that 5 remain bounded by the 
unit circle [35]. Since (I - A) is usually not normal, this condition is weakened 
to being only necessary, but in practice it seems to suffice. Performing the required 
operations, the eigenvalue of the operator (I - A) in Eq. (VII-6) is found to be 

t(k) = 1 - (a2 + 2p)(l - cos kdx) - iol sin kAx (VII-7) 

and it follows that stability is assured by a2 + 2/3 < 1. Lax 1361 has shown, for 
/3 = 0, that 1 01 / < 1 is a necessary and sufficient condition for stability of this 
advection prescription. The accuracy, amplitude damping, and phase error intro- 
duced by the advection part of this approximation are discussed elsewhere [37]. 
For the case of no advection (a = 0), Eq. (VII-7) results in the usual stability 
criterion encountered in explicit diffusion calculations, namely /3 < 3. For 
K = 3600 km2/hr, diffusion thus restricts the time step to 10.5 hr at a latitude of 
60 deg. 

Diffusion in the vertical direction is treated as a conserved flux, being modeled 
on the equation 

d* aF -= 
dt az 7 

where 
F = -K,(a+jaz). 
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The difference equations are thus (for fixed values of k and I), 

Fm--112 = -Km-l/a *w - An-1 
Gil - &n-l 

2 

(VII-8) 

where K,-1/2 is obtained from Fig. 3. The stability requirement is u&dt/dz’) < + 

which for u. = 1.8 x 1O-6 km2/hr (5 cm2/sec) leads to the restriction At < 7 hr. 
This constraint may be eliminated by writing implicit difference equations, but this 
additional complication is unnecessary at the present time. 

In order to explicitly account for volume conservation (as discussed in Section III) 
in the numerical solution, Eq. (1114) is rearranged before it is approximated by a 
finite difference expression. The quantity ~$2 is added to and subtracted from the 
right-hand side to give 

az,- 
at - -v, * vz, + z,9 + w(z& 

To obtain the difference approximation we first note that if the velocity com- 
ponents in 9 are chosen to be those centered at m = l$ (ignoring the horizontal 
centering for the moment), the last two terms may be written 

w, + Z,91* = w2 + z&* = w7 + i %n-1,&n - &7L-1) + @l& 3 (VII-8.1) 
m=7 

where Eq. (VII-15) has been used. To be consistent, the velocity components used 
for V must be those used for 9. 

To evaluate the divergence term, we make use of Green’s theorem, 

V, * Vz, = & 1 (Vz,) * Ndl. 

In finite difference form this expression becomes 

- &,z-,,, COS h-I,,) U‘lAl, 
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where 
AU,,, = a2dh(sin &+,,, - sin L,,,j 

2Fk+,/z.z 
At 

aAX cos 8, = ak+l12,1[h’)k+L1 + (dk.El - a~+l,‘2.~[(Zs)k+l,l - (Z.s)k,El 

2YkJ+,/2 = 

Al 
bk+,,2,,+,/24 + Uk-l,2.Z+1/2.1f~ a ' 

The fluxes defined above give second-order accuracy [37]. 
At each (k, I) point only two fluxes need be calculated, the other two being saved 

from similar preceeding calculations in adjacent zones. For boundary zones, the 
area, Aa, must correspond to the fluid part of the zone and the fluxes across solid 
boundaries are merely set zero, corresponding to an application of the zero normal 
velocity boundary condition. 

Upon splitting, the difference equation for z, is 

where F* involves z,~ and upt+l12 while F* itwo~ves 2: and u’@/~. 
Clearly the divergence part of the calculation can make no net contribution to 

the total volume of fluid since exactly that mass leaving one zone enters an adjacent 
zone and all normal boundary fluxes are set zero. It suffices then to show that 

to demonstrate conservation of volume. From Eq. (VII-8.1) we have 
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Since w, z 0 and 9 is evaluated as the sum of fluxes (Eq. VII-14), the right-hand 
side of this expression is zero. We have, then 

The stability analysis of a linearized form of this equation provides only the 
restriction max(1 011, 1 y I) < 1. A more meaningful analysis is carried out by 
considering a simplified version of this equation coupled to a simplified version 
of the acceleration equation. If we take as this system the linear equations 

du ah dh au 
dt= -gax, z= -Hax, 

and approximate them with the representative difference equations 

the stability condition obtained is (gH)li2(0 t/Ax) < 1. Allowing for half zones at 
60-deg. latitude, the restriction becomes dt < 0.25 hr. For safety, the time step 
chosen for the model is 10 minutes. This allows the calculation to proceed (on the 
LARC computer) at 20 times real time. 

The Coriolis acceleration couples the two momentum equations together. 
Consider 

du y& =fv, dv -& = -fu, 

where f = 252 sin 0. Multiplying the first equation by u, the second by v and 
adding the two, results in 

$ (24” + v2) = 0, (VII-IO) 

which is to say that, the Coriolis acceleration does not change the energy (since the 
force is normal to the displacement it does no work). This is used as a guide in 
choosing the numerical approximation for this process. Consider 

Un+l = u* + F[(l - y) an + yP+l], 
p+1 = vn - F[(l - r) U” + yzP+l], (VII- 11) 
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where F = fAt and y is an undetermined real parameter. Solving for the advanced 
velocities, and using matrix notation, 

where 

and 
1 + F2y2 - F2y F 

1 + F2y2 1 + F2yz 
w= 

F 1 + F2y2 - F2y - 
- 1 + F2y2 1 + F2y2 

Suppose that V is an eigenvector of W with corresponding eigenvalue h. The 
energy at time (n + 1) is given by the inner product 

(U, U) = (WV, WV) = X2( v, V) 

so that the energy guide amounts to the equality X2 = 1. 
The magnitude of the eigenvalue of W is 

/XI= 1+ 
F2 + F4y2 - 2F”y(l + F2y2) 

(1 + F2y2)2 * 

Satisfying the energy guide then leads to a cubic in y having the three roots l/2, 
+i/F, -i/F. Since y is a real parameter, the neutral case is thus given by y = l/2. 
Further analysis shows that y = 0 (the explicit case) results in / h 1 > 1 or growth, 
and y = 1 (the fully implicit case) results in / h / < 1, or damping. 

Caution must be used in applying these results when the momentum equations 
contain accelerations in addition to the Coriolis terms. In the present case, the 
differential equations are Eq. (111-l) and Eq. (111-2) and the corresponding 
difference equations are 

u”+l = u* + F[(l - y) v” + yvn+l], 
zP+l = v* - F[(l - y) un + yzP+l], (VII-12) 

where U* and v* are partially advanced values of u and v. That is, U* and v* contain 
the accelerations due to advection and diffusion for this time step. 

Although in the preceeding analysis the neutral energy case came from a choice 
of y = l/2 in Eqs. (VII-II), this choice in Eq. (VII-12) can be shown to lead to 
computational energy growth for finite At. Similarly if in Eq. (VII-12) un and vn are 
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replaced by U* and u*, the choice of y = l/2 also leads to computational energy 
growth. 

The equations used in the model result from the choice of y = 1, thus 

zP+l = (u* + FU*)/(l + P), 

u”+l = (-I%* + u*)/(l + P). (VII-13) 

While the numerical properties of this step can be determined only in very simple 
cases, the approximation used [Eqs. (VII-13)] seems to be stable in practice. 

The horizontal pressure gradient is evaluated by numerically integrating 
Eq. (111-9) downward through the mesh starting with the surface condition, 

vhP(“) = vhPs - @svhzs 

and using the approximation 

L--1/2 = s ,I:;: 4 dz = $ (zm - ~-1) + ; &&,n - z,-2) 
+ h-2 ---g-- (zm-1 - Gn-2) 

which is obtained by assuming that 4 varies linearly between “m" mesh points. 
Thus 

vhpbn-,,2 = 

where 

I2-112 = 3+1 8+ 62 (z2 - z,) 

and 

$i$ = gv@ = lo-3gv,a. 

In evaluating these terms, the V, operator is replaced by the appropriate 
centered difference. Thus for example, the north-south gradient is 

vho 1k4,2.1-112 = (%,l + (71e-l.Z - ok-l,Z-l - u7c,d2ade 

which centers the term for the acceleration equations. 
The vertical velocity field arises from a numerical integration of Eq. (111-3) 
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upward through the mesh starting with the boundary condition 

w, = w(H) = 0. 

The divergence of the horizontal velocity field 9 is evaluated as a line integral (by 
Green’s theorem), and is given by 

9 k.l.m+112 

= (01 + 02) cos ez+m - (0s + ~3 cm b-1,2 + (v + ~4 - uz - us) de/AX 
2a(sin 8,+,,, - sin 19r-r12) 

(VII-14) 
The notation comes from Fig. 5, so that ur = Uk+r/2,z+r/2,m+r/2, etc. 

,P-1 

FIG. 5. Notation diagram for the horizontal divergence calculation. 

Thus 

W $$F = $~Ok,z,i+1,2(z~+l - zi) (summed backwards), (VII-15) 

where gk,Z,i+1/2 is assumed constant in the interval from z~+~ to zi . 

VIII. CALCULATIONAL PROCEDURE 

The current version of this model is running on the LARC, a decimal digital 
computer with 26,000 words of available high-speed memory and 26 fast registers. 
A word consists of 12 digits; if floating point arithmetic is used, there is a sign digit, 
an excess 50 exponent and a fraction of 9 digits. Memory may be extended by use of 
either magnetic tapes or drums, both of which can exchange information with 
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memory in a fully buffered manner. Drums are subdivided into 100 bands of 
2500 words each; thus every drum has a capacity of 250,000 words. 

At the beginning of a calculation cycle the prognostic variables are all stored on 
one drum with each I line (circle of latitude) residing on one band. This requires 
25 bands. At the end of the cycle the values are on a different drum, having passed 
through memory and having been advanced from time step n(n - l/2) to 
n + l(n + l/2). The three-point interpolation scheme currently used in the model 
requires that three I lines be in memory simultaneously. In addition two more lines 
are used to bring information from and to send information to the drums. That is 
to say, while calculating new information for line I, using lines I + 1, and I - 1, 
the next line (I + 2) is being read in, and line Z - 2 is being written out onto a 
different drum. The buffering capability is used, and since the compute time per Z 
line turns out to be greater than the read/write time per Z line the machine is com- 
puting all the time, having essentially free input/output. 

Supposed then that lines Z - 1, Z, and Z + 1 are in memory, and the summary 
orders have been issued to commence writing from Z - 2 and reading into Z + 2. 
If E and 0 stand for even (r, S, z,) and odd (u, a) variables, we have in memory 
Ekn;tf,, and On-” k--1,2,1--1,2,m+2 for all m and k and for Z - 2, Z - 1, I, and Z + 1. 
First w$f is formed by integrating the divergence of the horizontal velocity 
field.‘Thi’s’then allows z!& to be formed for all k. Next, Et,l,m is computed based 
on the velocities and surface quantities at time n - l/2. Then north-south advection 
and diffusion (for all m and k) are done for 0E:&-1,2,m--1,2 , then vertical advection 
and diffusion (for all m and k), followed by east-west advection and diffusion 
(for all m and k). Finally, the acceleration terms are included (based on EtBlenz and 
EE, z+J, and the result is O~Z&-l,2,m-1,2 . This completes the calculation cycle, 
and, by this time, the new line (I + 2) is in memory and the calculation can be 
repeated for Z + 1. 

The calculation starts at the equator and proceeds north to 60 deg. It then 
starts at the equator again and proceeds south to 60 deg. At this time, the original 
state (time t) has been advanced to time t + d t and the variables have been moved 
to another drum. The succeeding cycle advances the state of the model to t + 2dt 
and moves the information back to the original drum. 

Periodically all variables are read from the current drum and written onto a 
magnetic tape for restart and editing purposes. A full tape can hold approximately 
15 restart dumps. 

APPENDIX A. DEFINITIONS OF SYMBOLS 

A albedo of the sea surface 
a radius of the earth (6366 km) 
CD drag coefficient 
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CD 
7 
g 
H 
h 
J 
K 
k 
I 
L 
m 
ms 
m, 
n 

P 
PS 
Y 
S 
T 
T 
t 
24 
us 
V 
V 

US 

W 

z 

2s 

i 

e 

K 

KU 

KT 

KTV 

Ko 
x 

P 

specific heat (I cal/gm deg) 
horizontal divergence of (u, v) field 
Coriolis parameter (252 sin e + (u/u) tan e) 

acceleration due to gravity 
depth of model ocean (2 km) 
specific enthalpy 
mechanical equivalent of heat (4.1862 x 10’ ergs/Cal) 
coefficient of compressibility 
latitudinal index, also used as a wavenumber 
longitudinal index 
latent heat of evaporation (596 cal/gm) 
depth index 
mass of salt 
mass of water 
time index 
pressure 
surface pressure (due to atmosphere) 
m&b + mdsdgm> 
salinity (gm/kg), S = 1OOOY 
temperature (“K) 
temperature (“C) 
time (hr) 
east-west current (positive to east) 
surface current (a) 
vector current with components (u, v, w) 
north-south current (positive poleward) 
surface current (v) 
vertical current (positive downward) 
depth coordinate (positive downward) 
surface height anomaly 
specific volume 
coefficient of thermal expansion 
the part of the vertical diffusion coefficient dependent on stability 
latitudinal angle, also used as potential temperature 
horizontal eddy viscosity coefficient 
vertical eddy viscosity coefficient 
horizontal eddy diffusion coefficient 
vertical eddy diffusion coefficient (KT~ = ~~5) 

vertical eddy diffusion coefficient for a stable configuration 
longitudinal angle 
water vapor mixing ratio 



P 
u 

UT 

Q 

Q 

Qh 

vh2 

AU 
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density 
density anomaly in situ [u = (p - 1) 103] 
density anomaly at atmospheric pressure 
angular velocity of the earth (27/24/hr) 
gradient operator 
horizontal gradient operator; 

au cos e 
Q"+=~=&&+T] 

horizontal Laplacian operator (approximate), 

Q2 - 1 
h p - a2c0s29 ax2 

“z”+J?!?. 

horizontal area, Au,,~ = a2AX (sin Ba+112 - sin 01-1,2). 
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APPENDIX B. NUMERICAL TECHNIQUES USED ALONG LATERAL BOUNDARIES 

In this section the numerical technique used along lateral boundaries is discussed. 
First, the assumptions pertinent to lateral boundaries are pointed out, and some 
terms are defined. Then the philosophy behind the technique is explained, and the 
technique is exemplified for situations involving advection and diffusion. Finally, 
the equation for the vertical velocity along lateral boundaries is obtained. 

Two important assumptions are made concerning the lateral boundaries. The 
first is that continents have essentially precipitous coastlines. That is, along the 
coast line, the ocean is two km deep (subject to modification by the local value of 
zJ. There is no continental shelf in the model. The second assumption is that the 
“horizontal” aspects of the physical coast line can be approximated by a sequence 
of line segments connecting even (see below) mesh points. Each line segment is 
thus a 5-deg arc of a meridian or a parallel, and the ordered collection of line 
segments delimiting a land mass is called a boundary line. In Fig. 2 of the text, 
boundary lines separate clear (oceanic) regions from stippled (land) regions. 
Boundary lines also serve to terminate the mesh at 60” north and south. 

Mesh points are classified even or odd, as are the dependent variables. Even 
mesh points occur at the intersection of k, 1, and py1 lines, while odd mesh points are 
located at the points (k - l/2,1 - l/2, m - l/2). Since we are concerned only 
with the lateral boundaries, we will consider points on a surface z = constant with 
the understanding that the rules developed hold at each of these surfaces. 

Each mesh point whether odd or even is further thought of as being either an 
exterior or an interior point. Exterior points coincide with continental or land 
regions and are ignored in the calculation. (They could, however, be used in an 
energy balance calculation to compute ground surface temperatures and moisture 
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Northern Hemisphere Southern Hemisphere 
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Fig. B-l. Indices for odd mesh points, Northern and Southern 
Hemispheres. 



A GLOBAL NUMERICAL OCEAN MODEL: PART I 143 
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Fig, B-Z. Indices for even mesh points, Northern and Southern 
Hemispheres. 
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content.) Interior points are those points at which the prognostic variables in the 
model are calculated each time step in accordance with the difference approxi- 
mations to Eqs. (III-l), (111-2) (111-4) (III-5), and (111-6). Interior points, if 
within 24 deg of boundary lines, are called boundary points and require special 
attention with respect to the difference equations. 

Since fluxes of the prognostic variables are specified along boundaries, the 
tendencies of quantities at boundary points are not necessarily zero. To compute 
these tendencies, the given boundary conditions are indirectly combined with the 
differential equations, and the tendencies are computed from this hybrid set of 
equations. This is accomplished by storing the appropriate data in unused exterior 
points that border boundary points. In this way the boundary conditions are 
satisfied and each boundary point is made to look like an interior point. For the 
most part then, only one difference equation has to be programmed for each 
differential equation. 

Each mesh point is assigned an index based on the location and orientation of 
the nearest boundary line (Figs. B-l and B-2). At each mesh point, then, the value 
of the index will determine the proper action to be taken so as to make that point 
appear to be an interior point. Exterior points have an index of 14; no calculation 
is done at these points. Interior points have an index of 13; no special preliminary 
setup is needed to calculate tendencies at these points. 

As an illustrative example consider the northern hemisphere horizontal advection 
calculation for velocity at a point with an odd index of 5. According to Fig. B-l 
(left portion) this point has a boundary line segment 24 deg to the east and another 
2: deg to the north. An example of this type of point occurs in Fig. 2 of the text 
at 122+ deg east longitude and 32$ deg north longitude. According to the horizontal 
advection difference approximation (see Section VII), to evaluate 

au 
' a 1 k-112.2-112 

we need values of u at (k - 3/2, I- l/2), (k - l/2, I - l/2) and (k + l/2, I - l/2). 
The first two points are interior points at which u is known. The last point is deter- 
mined from the boundary condition of no normal transport across lateral 
boundaries and this is satisfies by setting Uk+l/Z,L-llZ eqUd to -uk-l/2,l-l/2 . 

Similarly, to evaluate v(&/8) at this same point we have u at points 
(k - l/2,1 - 3/2) and (k - l/2, I - l/2) and use the “no lateral shear” boundary 
condition to determine the third point; u~-~/~,~+~/~ is set equal to uL--1/2.z-l~2 . Once 
these exterior points are set up, the terms u(au/ah), u(au/Z~e), etc. are calculated 
by the equations in Section VIII. Fortunately, the same procedures hold for 
diffusion as well as advection. 

As a second example, consider horizontal advection and diffusion of salinity in 
the southern hemisphere at a point with an even index of 5 [see Fig. B-2 (right 
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portion)]. The boundary condition of zero normal velocity at lateral boundaries 
means the term u(@+%) is zero. The no-shear boundary condition allows the 
east-west velocity component to be approximated by 

uk,Z = @k--1/2,1--1/2 + uk+1/2,Z-1/2)/2* 

To approximate the north-south diffusion term, (~/a2)(%S/i30~), we have S at the 
points (k, I - 1) and (k, Z) and need it at (k, I + 1). The boundary condition on S 
(and T for that matter) is zero normal flux at all lateral boundaries. If it is assumed 
that the salinity flux is proportional to the negative gradient of S, the boundary 
condition is satisfied by setting Sk,Z+l equal to &,&1 . 

The vertical velocity field is obtained at boundary points as well as at interior 
points from the divergence of the horizontal velocity field. Referring to Fig. 5 of the 
text for notation and recalling Green’s theorem, we see that for an interior point 

gk.Z = [@I + u4 - u2 - UP) dy + (01 + n2) dxZ+,,2 - (u2 + 04) d~Z-,,2]/2~dxZ 

where .rly = ad0 and dxz = a cos B,dh. [This is a restatement of Eq. (VII-14).] 
The horizontal divergence at boundary points is computed correctly if velocities 
corresponding to exterior points are simply set zero in this equation, and if the area, 
dxAy, is taken to be that area corresponding to the fluid part of the zone. 

For example, at a point in the northern hemisphere which has an index of 1, the 
horizontal divergence consistent with the velocity boundary conditions (zero shear, 
zero normal velocity) is, from Green’s theorem, 

9 _ 
k.Z - ~ - (u2 + us) + - (u, + u*) qqpydxl 

where dyAxz = (a2dX/2)(sin 0z+1,2 + sin 8, - 2 sin 0z-1,2). This is obtained from 
Eq. (VII-14) if u1 = vr = 0. 

The vertical velocity field is then obtained by substituting gk,&&,2 into 
into Eq. (VII-15). 
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